Please enter valid quantity
Please log in to add favorites.
NULL OR EMPTY CART
Annexin A5 (Annexin V) is a cellular protein in the annexin group. Annexin V is a probe commonly used to detect apoptotic cells by its ability to bind to phosphatidylserine, a marker of apoptosis when it is on the outer leaflet of the plasma membrane.
IVISense Annexin-V 750 is a targeted fluorescent imaging agent comprising the selective protein, Annexin A5 and a near-infrared (NIR) fluorochrome. IVISense Annexin-V 750 enables in vivo visualization and quantification of the membrane-bound phospholipid, phosphotidylserine, exposed in the outer leaflet of the cell membrane lipid bilayer during the early stages of apoptosis.
Fluorescent Agent Type | Targeted |
---|---|
Optical Imaging Classification | Fluorescence Imaging |
Product Brand Name | IVISense |
Quantity in a Package Amount | 1.0 Units |
Shipping Condition | Blue Ice |
Therapeutic Area | Atherosclerosis, Oncology/Cancer |
Unit Size | 1 Vial (10 doses) |
Wave Length | 750 nm |
Drug induced liver injury (DILI) is a major reason for late stage termination of drug discovery research projects, highlighting the importance of early integration of liver safety assessment in the drug development process. A technical approach for in vivo toxicology determination was developed usin ...
Our comprehensive range of bioluminescent and fluorescent imaging reagents provide researchers with the necessary tools to better understand early disease-related biological changes, track disease progression, help guide the drug discovery process, and evaluate efficacy and safety of drug candida ...
Non-alcoholic fatty liver disease (NAFLD) describes a progressive pathology that affects the liver. Fat accumulation causes fatty liver (NAFL) or steatosis to develop, which leads to lipotoxicity and in turn induces liver inflammation and apoptosis, resulting in non-alcoholic steatohepatitis (NAS ...
Researchers trust our in vivo imaging solutions to give them reliable, calibrated data that reveals pathway characterization and therapeutic efficacies for a broad range of indications. Our reagents, instruments, and applications support have helped hundreds of research projects over the years. And ...
Fluorescence molecular imaging is the visualization of cellular and biological function in vivo to gain deeper insights into disease processes and treatment effects. Designing an effective study from the beginning can help save time and resources.
Learn about several important best p ...
The goal of in vivo fluorescence molecular imaging is to enable non-invasive visualization and quantification of cellular and biological functioning to better understand and characterize disease processes and treatment effects earlier within the context of a biological system.
This s ...
Cancer chemotherapy can produce severe side effects such as suppression of immune function and damage to heart muscle, gastrointestinal tract, and liver. If serious enough, tissue injury can be a major reason for late stage termination of drug discovery research projects, so it is becoming more impo ...
Protocol for Annexin-Vivo 750 In Vivo Fluorescent Imaging Agent
The primary goal of preclinical imaging is to improve the odds of clinical success and reduce drug discovery and development time and costs. Advances in non-invasive in vivo imaging techniques have raised the use of animal models in drug discovery and development to a new level by enabling quick ...