We're Moving to Revvity.com
Visitors from the United States and Canada can now explore, discover, and buy our products and services at Revvity.com. You will be automatically redirected to Revvity.com
Not located in the United States or Canada?
We're Moving to Revvity.com
Visitors from the United States and Canada can now explore, discover, and buy our products and services at Revvity.com. You will be automatically redirected to Revvity.com
Not located in the United States or Canada?
Arthritis is inflammation in or around a joint, where two bones meet. A healthy joint is cushioned by cartilage and lined with synovium tissue which produces fluid to reduce friction during movement. Osteoarthritis occurs when wear and tear of the joint causes breakdown of the cartilage and inflammation of the synovial fluid. Osteoarthritis results from long term use of the joint and is associated with old age. Rheumatoid arthritis also results in breakdown of the joint, but as a result of an auto-inflammatory response.
Current methods to assess arthritis in animal models typically involve external measurements of limbs such as paw volume, paw thickness, and redness. While these methods do determine the overall progression of disease, they do not examine the underlying biology associated with the visible effects of the disease. Since arthritis involves not only inflammation pathways but also changes in vasculature and bone morphology, using fluorescent agents which can measure each of these changes individually allow for a more complete assessment of the overall clinical pathology. Preclinical imaging in the far-infrared region allows for non-invasive assessment of the biological response of the mouse over realistic timeframes of disease progression and for monitoring therapeutic efficacy.
Our preclinical imaging agents fall into three main categories: Activatable, meaning they are optically silent until cleaved by a protease of interest; Targeted, meaning they bind to a receptor or other cellular membrane constituent which must be present in the model system of interest; or Vascular, meaning they localize to vasculature and are used to assess changes in vascular permeability associated with disease.
The following agents can be used to image arthritis in vivo. Many of these agents can also be used to study arthritis in vitro and ex vivo. Please select an agent below to learn more about its technical properties and validated protocols. All of our agents can be used on FMT and IVIS systems, provided you have the capability to measure the wavelengths of the probes.
Agent | Agent Type | Agent Mechanism | Available wavelengths and optimal in vivo imaging time (post injection) | Route of metabolism/ background tissue(s) | Validated imaging methods* |
Cat B FAST™ | Activatable, fluorescent | Detects cathepsin B activity; Cat B accumulates in synovial fluid in rheumatoid arthritis | 680 FAST*: 6-24 h
750 FAST*: 6-24 h | Salivary glands, liver, kidneys | In vivo, flow cytometry, in vitro cell microscopy, frozen tissue labeling |
Cat K FAST™ | Activatable, fluorescent | Detects cathepsin K activity, which occurs in osteoclasts, chondrocytes and synovial fibroblasts during bone turnover | 680: 6-24 h | Kidneys, liver | In vivo, flow cytometry, in vitro cell microscopy, frozen tissue labeling |
MMPSense™ | Activatable, fluorescent | Detects the activity of matrix metallo- proteases 2, 3, 7, 9, 12 and 13 (MMP2, MMP3, MMP7, MMP9, MMP12, MMP13); MMP 13 is responsible for collagen breakdown in chondrocytes, while MMP’s 2, 3, and 9 degrade the non-collagen matrix components of joints | 645 FAST*: 24 h (6-24 h)
680: 24 h (24-36 h) 750 FAST*: 24 h (12-24 h) | Liver, kidneys (645 and 750 FAST)
Liver only (680) | In vivo |
ProSense® | Activatable, fluorescent | Detects cathepsin B, L, S and plasmin: enzymes involved in degradation of the extracellular matrix | 680: 24 h (24-48 h)
750: 24 h 750 FAST*: 6-24 h | Liver (680)
Low liver, intestines (750) Low liver, bladder (750 FAST) | In vivo, flow cytometry, in vitro cell microscopy |
RediJect COX-2 probe | Targeted, fluorescent | Efficiently target cyclooxygenase-2 (COX-2), which is normally absent from cells, but is found at high levels in inflammatory lesions | 600 nm: 3 h | Kidney, liver | In vivo, in vitro cell microscopy |
HypoxiSense™ | Targeted, fluorescent | Binds to carbonic anhydrase IX which is expressed in hypoxic tissues; in Rheumatoid arthritis, dysfunctional vasculature leads to high amounts of hypoxia | 680: 24 h | Kidney | In vivo, flow cytometry, in vitro cell microscopy, frozen tissue labeling |
RediJect Inflammation Probe | Targeted, chemiluminescent | Detects myelo- peroxidase activity, which is released by activated phagocytes in both chronic and acute inflammation | Emits at 425 nm, 10 min post-injection, 5 min BLI acquisition time, internal fluorescent control imaged at 745 nm excitation and 800 nm emission 1-5 sec acquistion | Kidney | In vivo |
OsteoSense® | Targeted, fluorescent | Binds to hydroxyapatite, an indicator of bone remodeling | 680: 3-24 h
750: 3-24 h 800: 3-24 h | Bladder | In vivo |
AngioSense® | Vascular, fluorescent | Will accumulate in areas of vascular leakage associated with tumorigenesis and inflammation; can be used to visualize the neovasculature | 680: 24 h
750: 24 h | Low liver, lung | In vivo |
AngioSPARK® | Vascular, fluorescent | Nanoparticle for imaging vascularity, long PK profile, 20 hour half-life in plasma; can also be used to assess vascular leak associated with arthritis | 680: 24 h
750: 24 h | Long term tissue accumulation | In vivo |
When choosing an agent for arthritis studies, several factors should be taken into consideration:
View more information on agents for other bone biology applications.
Antibody-induced arthritis
Monoclonal antibodies to collagen II can trigger an immune response in mice which provides a realistic model for rheumatoid arthritis. Eight days after treatment with the antibodies, the mouse exhibits pathology such as inflammation of the joint and synovium in addition to breakdown of the cartilage and bone. This model can be used in numerous mouse strains, including BALB/c which is typically resistant to other arthritis induction models (i.e. collagen-induced arthritis).
In Figure 2 (below), arthritis was induced in BALB/c mice and after 8 days the imaging agent CAT K 680 FAST™ was injected intravenously and the mouse was imaged 24 hours later. Fluorescent imaging results were compared to more traditional assessments of disease progression, such as clinical. As shown in Figure 3, 3D tomographic and 2D images were obtained from both arthritic and controlled mice and signal from fluorescence was compared to both paw thickness measurements and clinical score assessments.
Figure 1: Mouse antibody-induced arthritis. A) 5-week-old BALB/c mice are injected with 4 mg of ArthritoMab antibody cocktail followed 3 days later with LPS. After 8 days, CAT K 680 FAST™ is injected and the mouse is imaged 24 hour later, where fluorescent quantification is compared to paw thickness. B) Clinical score is typically assessed by visual assessment of paw swelling and redness.
Figure 2: Assessment of arthritic mice. A) 3D tomographic images were obtained by FMT 2500 B) Paw thickness (vernier caliper), clinical observation score and quantification of CAT K FAST fluorescence from tomographic datasets C) 2D epifluorescence images acquired using FMT 2500 D) Ex vivo tissue analysis and 2D Cat K FAST epifluorescent imaging.
In Figure 3 below, the activatable agents ProSense® and MMPSense™ are used assess protease activity in vivo, while the vascular imaging agent AngioSense™ detects changes in vascular leak associated with arthritis.
Figure 3: Activatable and Vascular agents used to image arthritis. A) The activatable agents ProSense and MMPSense are used to image protease activity associated with inflammation. B) The vascular agent AngioSense is used to image vascular leak using both planar imaging and intravital microscopy measurements in both healthy and arthritic tissue.
In addition to in vivo and ex vivo measurement as shown above, agents can also be used to label cells and imaged using fluorescence microscopy. In Figure 4A below, human synovial fibroblasts were isolated from rheumatoid arthritis patients.and labeled with CAT K 680 FAST. In Figure 4B rabbit synoviocytes (HIG-62 cell lines) were also labeled with the agent.
Figure 4: Uptake and activation of CAT K 680. Synovial fibroblasts isolated from human rheumatoid patient (A) or rabbit cell line (B). Cells were cultured with 1 mM CAT K FAST for 6 hours. Red: CAT K 680 FAST, Blue: DAPI nuclear stain; final magnification 40x.
Please visit our Citations library to search or browse references for arthritis studies using our preclinical imaging agents.