

AlphaLISA® Data Analysis using the GraphPad Prism Software (Version 4.03)

A. Selection of graph type and data transfer

- 1. Open the GraphPad Prism 4.03 software.
- 2. Select **File** and **New Project...** from the menu bar to open the **Welcome to GraphPad Prism** window (this window may also open automatically).
 - a. Select To start: Create a new project.
 - b. Select Choose: Type of graph and the XY (e.g. Points only) graph format.
 - c. Select Choose: Format of data table and 3 replicates to calculate error bars (or as required).
- 3. In the Data 1 table, enter the X Title (= title of X-axis) and Titles (= legend; tested conditions). (Note: The name of data tables may be changed by right-mouse clicking and select Rename. The name of the corresponding graphs is changed automatically. In this procedure, the default names are used.)
- 4. Enter the analyte concentrations (e.g. molar, M) used for the standard curve in the X Values column.
 - a. Use the scientific notation to enter the analyte concentrations (e.g. concentration = 1×10⁻⁶ M; enter 1.0e-06 instead of 0.000001). (Note: The number format can be standardized by clicking on X Values (to select the column), followed by Change and Number Format... In the Number Format window, select Always under Use scientific notation.)
 - b. Do not enter "0" as concentration for background (buffer) samples. Instead, enter a value two logs lower than the lowest analyte concentration of the standard curve (e.g. lowest analyte concentration: 3.0e-12; enter 3.0e-14 for all background samples).
- 5. Open the Excel file containing the Envision AlphaLISA data.
- 6. Copy and paste the data into the GraphPad table. (Note: To facilitate the data transfer, the GrahPad table and plate layout should be identical). The table should look like Example 1 below:

X Values	Α		
[TNFα] (M)	AlphaLISA Signal (counts)		
Х	A:Y1	A:Y2	A:Y3
1.00E-06	802729	801077	745013
3.00E-07	1380851	1440733	1435494
1.00E-07	2291553	2383819	2392411
3.00E-08	2526134	2658322	2645676
1.00E-08	1576856	1557610	1552331
3.00E-09	711402	657941	655692
1.00E-09	262733	232834	230468
3.00E-10	75125	72173	74629
1.00E-10	24078	26249	26576
3.00E-11	11085	10363	9902
1.00E-11	6153	5353	5677
3.00E-12	3945	3905	3893
3.00E-14	2898	2926	3167
3.00E-14	3037	2896	2941
3.00E-14	3149	2944	2774
3.00E-14	3145	3157	3094

7. Format the graph:

- a. In the *Navigator* window, select the **Data 1 graph** in the **Graphs** subfolder.
- b. To change any of the titles, click on **Y Title**, **X Title** or the graph title (**Data 1**) and enter the desired text.
- c. To format any of the axes, double-click on one of them to open the *Format Axes* window. Select the desired subfolder and adjust the settings as required.

B. Data conversion (log10)

- 1. In the *Navigator* window (Data Tables subfolder), select the Data 1 table.
- To convert the data table and graph to log10 scale, click on Analyze and select Type: Data manipulations and Transforms in the Analyze Data window.
- In the *Parameters: Transforms* window, select Transform X-values using and choose X=Log(X) from the scroll-down menu. The converted data are shown in the Transform of Data 1 table (*Navigator* window, Results subfolder).
- 4. Select the Transform of Data 1 graph (Graphs subfolder) to format the graph layout:
 - a. Double-click on the X-axis.
 - b. In the Format Axes / X axis window, select Gaps and Direction: Two segments (---//---).
 - c. Select Segment: Left and adjust Range Minimum / Maximum so that only the background (buffer) reading of the standard curve is shown in the center of this segment of the X-axis (e.g.: Minimum: -14.0; Maximum: -13.0). Adjust the Major ticks: Interval to half of the segment length (e.g.: 0.5) to show one tick in the center of the left X-axis segment.
 - d. Adjust Length: 10 % of axis.
 - e. Select Numbering or labeling, Location: None.
 - f. Select Segment: Right and appropriately adjust Range, Minimum / Maximum (e.g.: -12.0, 5.0), Major ticks: Interval (e.g.: 1.0) and Starting at (e.g.: -12.0).
 - g. Insert the "- ∞ " symbol below the left segment of the X-axis:
 - Select the T-symbol in the menu bar (Place text on the graph or page) and click below the left segment of the X-axis (align with the numbering of the right segment).
 - Click on the α ▼-symbol (menu bar), select Insert Math... and ∞ in the Insert Math Character window. Add "-" before the symbol.
 - h. Refer to step A.7 for other adjustments.

C. Curve fit

- 1. If the graph includes hook points, all points after the maximum counts have to be removed before performing the curve fit analysis.
- In the Data 1 table (*Navigator* window, Data Tables subfolder), highlight all hook points, then rightmouse click and choose Exclude Values. Refer to Example 2 below:

Example 2:			
X Values	A		
[TNFα] (M)	AlphaLISA Signal (counts)		
X	A:Y1	A:Y2	A:Y3
1.00E-06	802729*	801077*	745013*
3.00E-07	1380851*	1440733*	1435494*
1.00E-07	2291553*	2383819*	2392411*
3.00E-08	2526134	2658322	2645676
1.00E-08	1576856	1557610	1552331
3.00E-09	711402	657941	655692
1.00E-09	262733	232834	230468
3.00E-10	75125	72173	74629
1.00E-10	24078	26249	26576
3.00E-11	11085	10363	9902
1.00E-11	6153	5353	5677
3.00E-12	3945	3905	3893
3.00E-14	2898	2926	3167
3.00E-14	3037	2896	2941
3.00E-14	3149	2944	2774
3.00E-14	3145	3157	3094

3. Select the Transform of Data 1 table (Navigator window, Results subfolder).

- 4. Click on Analyze and choose Type: Curves & regression and Nonlinear regression (curve fit) in the *Analyze Data* window.
- 5. In the Parameters: Nonlinear Regression (Curve Fit) window choose:
 - a. Equation subfolder: Sigmodial dose-response (variable slope), Unknowns from standard curve.
 - b. Weighting subfolder: Weight by 1/Y2 (minimize relative distance squared).
- The curve fit results are shown in the Nonlin fit of Transform of Data 1 table (Navigator window, Results subfolder).

D. Calculation of LDL (Lower Detection Limit) and interpolation of unknowns from the standard curve

- 1. Determine the LDL value:
 - a. Calculate the average and standard deviation (SD) counts of all background (buffer) wells using e.g. an Excel spreadsheet.
 - b. Calculate the average + 3×SD counts and enter this value in the **Data 1** table in the first Ycolumn below the standard curve data. Refer to Example 3 below:

Example 3:			
X Values	A		
[TNFα] (M)	AlphaLISA Signal (counts)		
х	A:Y1	A:Y2	A:Y3
1.00E-06	802729*	801077*	745013*
3.00E-07	1380851*	1440733*	1435494*
1.00E-07	2291553*	2383819*	2392411*
3.00E-08	2526134	2658322	2645676
1.00E-08	1576856	1557610	1552331
3.00E-09	711402	657941	655692
1.00E-09	262733	232834	230468
3.00E-10	75125	72173	74629
1.00E-10	24078	26249	26576
3.00E-11	11085	10363	9902
1.00E-11	6153	5353	5677
3.00E-12	3945	3905	3893
3.00E-14	2898	2926	3167
3.00E-14	3037	2896	2941
3.00E-14	3149	2944	2774
3.00E-14	3145	3157	3094
	3404		

- 2. Enter the counts to calculate the concentration of the unknown:
 - a. Copy the triplicate readings obtained for the unknown sample from the Envision AlphaLISA Excel file in the Data 1 table below the standard curve data (or alternatively, enter the average count). See Examples 4a and 4b below:

Example 4a:

	3404			
	83544	87569	85682	
Example 4b:				
	3404			

85598

- 3. To re-convert the LDL and unknown data to linear scale, proceed as follows:
 - a. Select the table **Non-lin fit of Transform of Data 1**, then **Interpolated X mean values** (*Navigator* window, **Results** subfolder).
 - b. Click on Analyze and selecting Type: Data manipulations and Transforms in the Analyze Data window.
 - c. In the Parameters: Transforms window, select Transform X values using X=10^X.
 - d. The **Transform of Nonlin fit of Transform of Data 1** table opens showing the calculated results. If no data are displayed in the X-axis column of this table, the counts entered in step 1 and 2 do not fall in the range of the standard curve and can thus not be interpolated.
- 4. To convert the data into a more user-friendly format, perform the following steps:
 - a. Click again Analyze and select Type: Data manipulations and Transforms.
 - b. In the *Parameters: Transforms* window, select Transform X values using X=K×X and K= 1e12 (if converting from M to pM; or adjust accordingly).
 - c. The converted results for the LDL and unknown concentrations are shown in the **Transform of Transform of Nonlin fit of Transform of Data 1** table (*Navigator* window, **Results** subfolder).

E. Calculation of maximum counts and signal-to-background (S/B) ratio

- 1. Select the Data 1 table in the Navigator window (Data Tables subfolder).
- 2. Click on **Analyze** and select **Type: Statistical analyses** and **Row means/totals** in the **Analyze Data** window.
- 3. In the Parameters: Row Means/Totals window, select Calculate: Row means with SD.
- The average counts (mean) and standard deviations (SD) for each standard curve concentration are shown in the Row Stats of Data 1 table (*Navigator* window, Results subfolder).
 a. Take note of the average maximum counts in this table.
- 5. Calculate the S/B ratio by dividing the average maximum counts (refer to step 4.a) by the average background counts (refer to step D.1.a).
- 6. In the Transform of Data 1 graph (*Navigator* window, Graphs subfolder) enter the following information using the text T-symbol in the menu bar:
 - a. LDL: refer to step D.4.c
 - b. Maximum counts: refer to step 4.a of this section
 - c. Minimum counts: refer to step D.1.a
 - d. S/B ratio: refer to step 5 of this section
- 7. The final graph with a linear Y-axis should look like the Example 5 below:
 - Example 5:

- 8. To create a copy of this graph with a log10 Y-axis, perform the following steps:
 - a. Select the Transform of Data 1 graph (Navigator window, Graphs subfolder).
 - b. From the main menu, select **Insert** and **Duplicate Current Sheet** to create the **Copy of Transform of Data 1 graph**.
 - c. Double-click on the Y-axis and select **Appearance: Scale: Log 10** in the Format Axes (*Left Y axis*) window. Refer to Example 6 below:

