Introducing Revvity - Expanding the boundaries of human potential through science
(Revvity was previously affiliated with 爱游戏平台注册登录
, Inc.)
We are now two standalone organizations
Life Sciences & Diagnostics and Analytical & Enterprise Solutions
Alpha Donor beads conjugated to anti-GFP antibody. The antibody is a mouse monoclonal antibody that recognizes wildtype and recombinant GFP (rGFP), and cross-reacts with eGFP. These beads can be used to capture GFP-tagged proteins for AlphaScreen, AlphaLISA, and AlphaPlex no-wash assays.
true falseFor research use only; not for diagnostic procedures. All products to be used in accordance with applicable laws and regulations including without limitation, consumption & disposal requirements under European REACH regulations (EC 1907/2006).
Please enter valid quantity
Please log in to add favorites.
NULL OR EMPTY CART
These beads can be used in conjunction with AlphaScreen, AlphaLISA, or AlphaPlex beads to create Alpha no-wash immunoassays for:
In a typical Alpha assay, 1 mg of Donor beads is sufficient to run 1,000-2,000 wells using a 25 µL reaction volume.
Features:
AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym "Alpha" stands for amplified luminescent proximity homogeneous assay. As the name implies, some of the key features of these technologies are that they are non-radioactive, homogeneous proximity assays. Binding of molecules captured on the beads leads to an energy transfer from one bead to the other, ultimately producing a luminescent/fluorescent signal. To understand how a signal is produced, one must begin with an understanding of the beads. AlphaScreen and AlphaLISA assays require two bead types: Donor beads and Acceptor beads. Each bead type contains a different proprietary mixture of chemicals, which are key elements of the AlphaScreen technology. Donor beads contain a photosensitizer, phthalocyanine, which converts ambient oxygen to an excited and reactive form of O2, singlet oxygen, upon illumination at 680 nm. Please note that singlet oxygen is not a radical; it is molecular oxygen with a single excited electron. Like other excited molecules, singlet oxygen has a limited lifetime prior to falling back to ground state. Within its 4 µsec half-life, singlet oxygen can diffuse approximately 200 nm in solution. If an Acceptor bead is within that proximity, energy is transferred from the singlet oxygen to thioxene derivatives within the Acceptor bead, subsequently culminating in light production at 520-620 nm (AlphaScreen) or at 615 nm (AlphaLISA). In the absence of an Acceptor bead, singlet oxygen falls to ground state and no signal is produced. This proximity-dependent chemical energy transfer is the basis for AlphaScreen's homogeneous nature.
Antibody Conjugates | Anti-GFP |
---|---|
Automation Compatible | Yes |
Bead Type or Core Bead Type | Alpha Donor |
Detection Method | Alpha |
Format | Microplates |
Product Brand Name | AlphaLISA |
Shipping Condition | Blue Ice |
Unit Size | 25 mg |
Alpha has been used to study a wide variety of interactions, including protein:protein, protein:peptide, protein:DNA, protein:RNA, protein:carbohydrate, protein:small molecule, receptor:ligand, and nuclear receptor:ligand interactions. Both cell-based and biochemical interactions have been monitored ...
This guide presents the simple conversion of an ELISA or other immunoassay to an AlphaLISA® immunoassay.
AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym “Alpha” stands for Amplified Luminescent Proximity Homogeneous Assay. The assay does not require any washing steps. Binding of proteins or other binding partners ...
Binding events between biomolecules are important components of biological processes and a number of these biomolecular interactions have been targeted for the development of novel therapeutic drugs. p53 is a transcription factor and tumor suppressor protein that is activated in response to cellu ...